
230 Java Programming for A-level Computer Science

9 Searching

In the second part of this chapter, we will turn our attention to methods for finding a particular

record within a set of data. The method that is used will depend on the way in which the data is

organised. For data that is in random order, a linear search is used. However, if the data has been

sorted into numerical or alphabetical order then a faster binary search method can be used.

Linear search

Linear searches are used with unsorted data. The procedure is simple:

 begin at the first data item,

 check each item in turn,

 stop when either the required data is found, or when the end of the data set is reached,

 give a message to the user if the required data was not present.

To explore how a linear search operates, we will set up a program which allows the user to search a

set of unsorted data:

A shop identifies twelve products by stock codes composed of a pair of upper case letters

followed by a pair of digits, for example:

 FG78, RT12

The stock codes are stored in a table, and are not sorted into order.

A program is required which will search the data:

 If the required stock code is found, its position in the table should be displayed.

 If the stock code is not found, a warning message should be given.

Begin the project in the standard way. Close all previous projects, then set up a New Project. Give

this the name linearSearch, and ensure that the Create Main Class option is not selected.

Return to the NetBeans editing page. Right-click on the linearSearch project, and select New /

JFrame Form. Give the Class Name as linearSearch, and the Package as linearSearchPackage:

38 82 17 45 106 12 64 73

search value 106

found

search value 94

not found

 Chapter 9: Searching 231

Return to the NetBeans editing screen.

 Right-click on the form, and select Set layout / Absolute layout.

 Go to the Properties window on the bottom right of the screen and click the Code tab.

Select the option: Form Size Policy / Generate pack() / Generate Resize code.

 Click the Source tab above the design window to open the program code. Locate the main

method. Use the + icon to open the program lines and change the parameter “Nimbus” to

“Windows”.

Run the program and accept the main class which is offered. Check that a blank window appears

and has the correct size and colour scheme. Close the program and return to the editing screen.

Click on the Design tab to move to the form layout view.

Add a Table component to the form. Rename this as tblStockCodes.

Go to the Properties window for the table and locate the model property. Click in the right column

to open the editing window. Set the number of Rows to 12, and the number of Columns to 2.

Give titles and data types for the columns:

 Position Integer

 Stock code String

Set only the Stock code column to be editable.

232 Java Programming for A-level Computer Science

Click the OK button to return to the form design screen. Check that the table headings are displayed

correctly. Add:

 a label "Search value", with a text field alongside called txtSearchValue.

 a button with the caption "Search". Rename this as btnSearch.

 a text field for output of the result of the search. Rename this as txtResult.

Click the Source tab to move to the program code screen.

The program should search a set of twelve stock codes, each composed of a pair of upper case

letters followed by a pair of digits, such as FG78 or RT12. Rather than having to create a set of test

data, we can make the program generate the stock codes using random numbers.

Add the Java random number module at the start of the program. Define an array called stockCode

to hold the test data, then insert a loop in the linearSearch() method:

package linearSearchPackage;

import java.util.Random;

public class linearSearch extends javax.swing.JFrame {

 String[] stockCode=new String[13];

 public linearSearch() {
 initComponents();

 String stockCode;
 for (int i=0; i<12;i++)
 {

 }

 }

 Chapter 9: Searching 233

To generate the stock codes, we need to know how random numbers are produced in Java. To start

the random number generator, we use:

 Random r = new Random();

We obtain random numbers with lines such as:

 int n = r.nextInt(10);

The number in brackets after nextInt specifies the range for the random number. The command

nextInt(10) will produce a number between 0 and 9.

To produce the letters at the start of the stock code, we can make use of ASCII values. These are

numbers allocated to each of the characters of the keyboard, and are standardised for all computer

systems. Upper case letters are numbered in sequence:

 A has ASCII value 65,

 B has ASCII value 66,

and so on up to Z which has ASCII code value 90. If we generate a random number in the range

65-90, this can be converted to the corresponding upper case letter.

Add lines of code to the loop in the linearSearch() method. We begin by inserting a sequence

number into the left column of the table. The random number generator is started, and a loop

generates two ASCII values in the range 65-90 using the formula:

 65 + r.nextInt(26)

The ASCII values are converted to upper case letters, which are then added to create the stock code.

The stock code is finally displayed in the right column of the table.

 public linearSearch() {

 initComponents();

 String stockCode;

 for (int i=0; i<12;i++)

 {

 tblStockCodes.getModel().setValueAt(i+1,i,0);

 Random r = new Random();

 stockCode="";

 for (int j=0;j<2;j++)

 {

 char randomChar = (char) (65 + r.nextInt(26));

 stockCode += String.valueOf(randomChar);

 }

 tblStockCodes.getModel().setValueAt(stockCode,i,1);

 }

 }

Run the program. Check that a Position number and random two letter Stock code are displayed on

each row of the table, similar to the illustration below.

234 Java Programming for A-level Computer Science

Close the program window and return to the NetBeans editing screen.

We need to add two digits, each in the range 0-9, to complete the stock code. Numbers have been
allocated ASCII values in a similar way to letters:
 0 has ASCII value 48,

 1 has ASCII value 49,

and so on up to 9 which has ASCII code value 57. Return to the loop in the linearSearch() method.
Add lines of code to generate ASCII values between 48 and 57, then convert these into characters to
add to the stock code:

 for (int i=0; i<12;i++)
 {
 tblStockCodes.getModel().setValueAt(i+1,i,0);
 Random r = new Random();
 stockCode="";
 for (int j=0;j<2;j++)
 {
 char randomChar = (char) (65 + r.nextInt(26));
 stockCode +=String.valueOf(randomChar);
 }

 for (int j=0;j<2;j++)
 {
 char randomChar = (char) (48 + r.nextInt(10));
 stockCode +=String.valueOf(randomChar);
 }

 tblStockCodes.getModel().setValueAt(stockCode,i,1);
 }

Run the program. Check that full stock codes consisting of two letters and two digits are
generated, as shown below.

 Chapter 9: Searching 235

Close the program window and return to the NetBeans editing screen. Use the Design tab to move

to the form layout page.

We are now ready to set up the search procedure. A flow chart for the linear search algorithm is

given on the next page.

Double click the 'Search' button to create a method. Begin by adding a loop to transfer the stock

codes from the table into the stockCode array. We will also collect the required search value from

the txtSearchValue text field.

 private void btnSearchActionPerformed(java.awt.event.ActionEvent evt) {

 for (int i=1; i<=12;i++)
 {
 stockCode[i]=(String) tblStockCodes.getModel().getValueAt(i-1,1);
 }
 String searchValue=txtSearchValue.getText();

 }

We will now add the loop to check each of the data items until either the required stock code is
found, or the end of the array is reached.

 String searchValue=txtSearchValue.getText();

 int position=1;
 Boolean found=false;
 while (found==false && position<=12)
 {
 if(stockCode[position].equals(searchValue))
 {
 found=true;
 }
 else
 {
 position++;
 }
 }

 }

236 Java Programming for A-level Computer Science

Linear search algorithm:

Y

N

start

found = false

stockCode[position]

= searchValue?

position = 1

input search value

Y

last data item

reached?

found = true?
N

stop

found = true
N

output position

of searchValue

Y

output message

 "not found"

position = position + 1

 Chapter 9: Searching 237

The final step is to output the position in the table where the required stock code was found, or give

a message that the stock code was not found.

 while (found==false && position<=12)
 {
 if(stockCode[position].equals(searchValue))
 {
 found=true;
 }
 else
 {
 position++;
 }
 }

 if (found==true)
 {
 txtResult.setText("Found at position "+String.valueOf(position));
 }
 else
 {
 txtResult.setText("Search value not found");
 }

 }

Run the program. Check that correct messages are given when searches are carried out for stock

codes in the list, and also codes not present in the table.

238 Java Programming for A-level Computer Science

Binary search

Linear searches are used with unsorted data, but we can user the faster and more efficient Binary

Search method if the data is first sorted into alphabetical or numerical order. Speed can be

important when searching large quantities of data.

The strategy used in a Binary Search is to first examine the middle item of the data set. There will

be three possible outcomes:

 The required item is found and the search can end.

 The middle item is after the required item in the sequence.

 The middle item is before the required item.

For example, let us search for the item 64 in the data set:

The position of the middle item is found by averaging the index numbers of the first and last array

elements, ignoring any decimal fraction:

 (0 + 7)

 2

 Element 3 will be checked first:

The required search item is 64, so this must lie after position 3 which contains a smaller number. All

the array elements up to position 3 can be eliminated from the search, and the left pointer for the

remaining group of search items is moved to position 4. The binary search is now repeated,

focussing only on the remaining group of data items. A new middle position is calculated:

 (4 + 7)

 2

 Element 5 will be checked next:

The required search item 64 is now less than the value of the middle item examined. All the array

elements from position 5 upwards can be eliminated from the search, and the right pointer for the

remaining group of items moved to position 4. A new middle position is calculated:

 (4 + 4)

 2

12 17 38 45 64 73 82 106

[0] [1] [2] [3] [4] [5] [6] [7]

12 17 38 45 64 73 82 106

[0] [1] [2] [3] [4] [5] [6] [7]

12 17 38 45 64 73 82 106

[0] [1] [2] [3] [4] [5] [6] [7]

= 3.5 which is truncated to 3

= 5.5 which is truncated to 5

= 4

left right

middle

left right

middle

 Chapter 9: Searching 239

 Element 4 will be checked next. The required item has been found:

We have seen how this method will find items which are present in the data set, but what would

happen if we tried to search for an item that was not present, such as 58?

The search would proceed in the same way as before, up to the point that position 4 was checked:

At this point we know that the required data item 58 should lie to left of position 4, so the right

pointer is moved back to position 3.

The left and right pointers, used to mark the limits of the remaining unsearched data, cross over one

another. This indicates that there is no further data to search and required item cannot be present.

The search can end, and a warning message can be displayed for the user.

For the next project, we will produce a program to carry out a binary search of twelve

words, sorted beforehand into alphabetical order. To demonstrate the operation of the

binary search, the program will indicate the left, right and middle positions of the

remaining group of unsearched data at each stage during the search procedure.

A flowchart for the binary search algorithm is given on the next page.

12 17 38 45 64 73 82 106

[0] [1] [2] [3] [4] [5] [6] [7]

12 17 38 45 64 73 82 106

[0] [1] [2] [3] [4] [5] [6] [7]

12 17 38 45 64 73 82 106

[0] [1] [2] [3] [4] [5] [6] [7]

12 17 38 45 64 73 82 106

[0] [1] [2] [3] [4] [5] [6] [7]

12 17 38 45 64 73 82 106

[0] [1] [2] [3] [4] [5] [6] [7]

left right

middle

left right

middle

left right

middle

left right
middle

left right

240 Java Programming for A-level Computer Science

Binary search algorithm:

Y

N

Y

Y

N

right = middle - 1

N

found = true

start

word[middle]

= searchValue?

input search value

input entries for word[] array

sort word[] array

 middle = (left + right) / 2

display left, right and middle

N

stop

output position

of searchValue

Y

output message

 "not found"

found = true?

left <= right?

left = middle + 1

display the sorted list

 left = 0 right = 11

word[middle]

after searchValue?

 Chapter 9: Searching 241

Begin the project in the standard way. Close all previous projects, then set up a New Project. Give

this the name binarySearch, and ensure that the Create Main Class option is not selected.

Return to the NetBeans editing page. Right-click on the binarySearch project, and select New /

JFrame Form. Give the Class Name as binarySearch, and the Package as binarySearchPackage.

Return to the NetBeans editing screen.

 Right-click on the form, and select Set layout / Absolute layout.

 Go to the Properties window on the bottom right of the screen and click the Code tab.

Select the option: Form Size Policy / Generate pack() / Generate Resize code.

 Click the Source tab above the design window to open the program code. Locate the main

method. Use the + icon to open the program lines and change the parameter “Nimbus” to

“Windows”.

Run the program and accept the main class which is offered. Check that a blank window appears

and has the correct size and colour scheme. Close the program and return to the editing screen.

Click the Design tab to move to the form layout view.

Add a Table component to the form. Rename this as tblSearch.

Go to the Properties window for the table and locate the model property. Click in the right column

to open the editing window. Set the number of Rows to 12, and the number of Columns to 4.

Give titles and data types for the columns:

 Position Integer

 Data String

 Left, right String

 Middle String

Set only the Data column to be editable.

242 Java Programming for A-level Computer Science

Click OK to return to the form design screen. Check that the table headings are displayed correctly.

Add:

 a button with the caption "Sort". Rename this as btnSort.

 a label "Search value", with a text field alongside called txtSearchValue.

 a button with the caption "Search". Rename this as btnSearch.

 a text field for output of the result of the search. Rename this as txtResult.

Use the Source tab to move to the program code view. We will begin by adding a Java module for

editing the table and defining an array to hold the data values. Add a series of words to the array as

test data. The user will be able to edit these entries later if they wish, when the program is running.

package binarySearchPackage;

import javax.swing.table.TableCellEditor;

public class binarySearch extends javax.swing.JFrame {

 String[] word=new String[12];

 public binarySearch() {
 initComponents();

 word[0]="zero";
 word[1]="one";
 word[2]="two";
 word[3]="three";
 word[4]="four";
 word[5]="five";
 word[6]="six";
 word[7]="seven";
 word[8]="eight";
 word[9]="nine";
 word[10]="ten";
 word[11]="eleven";

 }

 Chapter 9: Searching 243

Add a loop to number the rows of the table and copy the array values into the Data column.

 word[10]="ten";
 word[11]="eleven";

 for (int i=0; i<12; i++)
 {
 tblSearch.getModel().setValueAt(i,i,0);
 tblSearch.getModel().setValueAt(word[i],i,1);
 }

 }

Run the program and check that the row numbers and data items are displayed correctly.

Close the program window and return to the NetBeans editing screen.

The binary search will only work for sorted data, so we will use a bubble sort method to arrange the

words in alphabetical order. Click the Design tab to move to the form layout view. Double click the

"Sort" button to create the method, then add lines of code for the bubble sort.

We will begin by closing the table editor, to ensure that all data values are available for processing.

We will then collect the data items from the table and transfer them back into the word[] array.

 private void btnSortActionPerformed(java.awt.event.ActionEvent evt) {

 {

 TableCellEditor editor = tblSearch.getCellEditor();
 if (editor != null)
 {
 editor.stopCellEditing();
 }
 for (int i=0; i<12; i++)
 {
 word[i]=(String) tblSearch.getModel().getValueAt(i,1);

 }

 }

244 Java Programming for A-level Computer Science

The next step is to add the bubble sort loop.

 for (int i=0; i<12; i++)
 {
 word[i]=(String) tblSearch.getModel().getValueAt(i,1);

 }

 Boolean swap=true;
 String tempWord;
 while (swap==true)
 {
 swap=false;
 for (int i=0; i<11;i++)
 {
 if (word[i].compareTo(word[i+1])>0)
 {
 swap=true;
 tempWord=word[i];
 word[i]=word[i+1];
 word[i+1]=tempWord;
 }
 }
 }

 }

The final step is to redisplay the sorted data in the table.

 if (word[i].compareTo(word[i+1])>0)
 {
 swap=true;
 tempWord=word[i];
 word[i]=word[i+1];
 word[i+1]=tempWord;
 }
 }
 }

 for(int i=0;i<12;i++)
 {
 tblSearch.getModel().setValueAt(word[i],i,1);
 }

 }

Run the program and check that the list of words in the table can be sorted into alphabetical order

correctly, as shown below.

It should be possible to edit the data in the table, then re-sort the new data set.

 Chapter 9: Searching 245

Close the program window and return to the NetBeans editing screen. Use the Design tab to move

to the form layout view.

We will now set up the binary search procedure. Double click the "Search" button to create an

empty method. We will add lines of code to carry out a series of tasks:

 Define an array called limit[] which will display information about the positions of the left

and right pointers at different stages during the binary search. This will help us to

understand how the program has carried out the search procedure.

 Use a loop to collect the data values from the table and transfer them to the word[] array,

ready for searching.

 Within the loop we will also initialise the entries in the limit[] array to be blank, and clear

the columns of the table which will display the pointer information.

 Finally, we will collect the search value entered in the text field by the user.

 private void btnSearchActionPerformed(java.awt.event.ActionEvent evt) {

 String[] limit=new String[12];

 for (int i=0; i<12;i++)

 {

 word[i]=(String) tblSearch.getModel().getValueAt(i,1);

 limit[i]="";

 tblSearch.getModel().setValueAt("",i,2);

 tblSearch.getModel().setValueAt("",i,3);

 }

 String searchValue=txtSearchValue.getText();

 }

246 Java Programming for A-level Computer Science

We will first implement the binary search algorithm as shown in the flowchart above, but without

displaying any pointer information. This will allow us to test that the search procedure works

correctly.

The program begins by initialising the left and right pointers to the lower and upper limits of the

array. We then enter a loop which will continue until either the required data item is found, or we

know that it is not present.

Each time around the loop, the program calculates the middle position for the current group of

unsearched data items. The array element at the middle position is checked, and the left or right

pointer moved if necessary to reduce the size of the unsearched data group.

When the loop ends, a message is displayed to show the result of the search.

 for (int i=0; i<12;i++)

 {

 word[i]=(String) tblSearch.getModel().getValueAt(i,1);

 tblSearch.getModel().setValueAt("",i,2);

 tblSearch.getModel().setValueAt("",i,3);

 limit[i]="";

 }

 String searchValue=txtSearchValue.getText();

 int left=0;

 int right=11;

 int middle=0;

 Boolean found=false;

 while (found==false && left<=right)

 {

 middle= Math.round(((left+right)/2)- 0.5f);

 if(word[middle].equals(searchValue))

 {

 found=true;

 }

 else

 {

 if (word[middle].compareTo(searchValue)>0)

 {

 right=middle-1;

 }

 else

 {

 left=middle+1;

 }

 }

 }

 if (found==true)

 {

 txtResult.setText("Found at position "+String.valueOf(middle));

 }

 else

 {

 txtResult.setText("Search value not found");

 }

 }

 Chapter 9: Searching 247

Run the program. Be careful to sort the data before carrying out a binary search.

Enter search values and check that the correct search results are displayed, when either the search

value is present or not present in the table.

Close the program and return to the NetBeans editing screen.

We will now add lines of code to the program which will show the positions of the left, right and

middle pointers as each step of the search is carried out. The additional lines of code are indicated

in the program listing on the next page.

When you have added the extra code, run the program and examine the output in the table.

The program begins with search 1 of the data. At this stage, the left pointer is at position 0, the

right pointer is at position 11, and middle will be calculated as position 5. If the required data item

happens to be at this position then the search can end:

248 Java Programming for A-level Computer Science

 private void btnSearchActionPerformed(java.awt.event.ActionEvent evt) {

 String[] limit=new String[12];

 for (int i=0; i<12;i++)

 {

 word[i]=(String) tblSearch.getModel().getValueAt(i,1);

 limit[i]="";

 tblSearch.getModel().setValueAt("",i,2);

 tblSearch.getModel().setValueAt("",i,3);

 }

 String searchValue=txtSearchValue.getText();

 int left=0;

 int right=11;

 int middle=0;

 int count=1;

 Boolean found=false;

 while (found==false && left<=right)

 {

 middle= Math.round(((left+right)/2)- 0.5f);

 limit[left]=limit[left]+String.valueOf(count)+" ";

 limit[right]=limit[right]+String.valueOf(count)+" ";

 for (int i=0; i<12; i++)

 {

 tblSearch.getModel().setValueAt(limit[i],i,2);

 }

 tblSearch.getModel().setValueAt(count,middle,3);

 if(word[middle].equals(searchValue))

 {

 found=true;

 }

 else

 {

 if (word[middle].compareTo(searchValue)>0)

 {

 right=middle-1;

 }

 else

 {

 left=middle+1;

 }

 }

 count++;

 }

 if (found==true)

 {

 txtResult.setText("Found at position "+String.valueOf(middle));

 }

 else

 {

 txtResult.setText("Search value not found");

 }

 }

 Chapter 9: Searching 249

If the search value is not yet found, the left or right pointer will be moved to reduce the size of the

remaining unsearched group of data items, and a new middle position will be calculated.

In this example we are searching for the word "ten".

After search 1, the required item is not found. The right pointer remains at position 11 but the left

pointer is now moved to position 6, ready for search 2.

A new middle pointer value is calculated as position 8, and the required data is found at this

location.

In some cases, more than two searches may be needed to find the required data value, or to prove

that it is not present. In this example, four searches were needed to find the word "six".

